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Abstract 
Type 2 diabetes mellitus (T2DM) has been globally 

recognized to trigger the risk of Alzheimer's Disease 

(AD) [commonly known as Type 3 diabetes (T3DM)] 

which has towering prevalence across the world. This 

study delineates the molecular crosstalk of these 

comorbidities using bioinformatics and network 

biology. Stringent analysis of Affymetrix microarray 

data from datasets GSE26168 and GSE63063 has 

provided substantial molecular correlations of T2DM 

to AD. Estimating common differentially expressed 

genes, regulating transcriptional factors, involving 

signaling kinase and coinciding biological processes of 

these insidious pathologies open new windows for 

therapeutic targets and diagnostic biomarkers. 

Numerous pivotal genes including FCER1G, FGR, 

ALOX5AP, NCF2 and CSF3R, have been studied to 

regulate insulin signalling pathways and interestingly 

noticed differential expression patterns in AD. 

 

 A bunch of DEG genes from this series are also 

involved in neuroinflammation and synaptic 

dysfunction concurring the molecular interplay 

between T2DM and AD. The results of the network 

analysis further revealed complex interrelations 

between the dysregulated genes, central hubs and 

potential regulatory nodes critical to the 

pathophysiology of T3DM comorbidity. Overall, these 

findings unveil the molecular underpinnings of T3DM 

interplay and provide a roadmap towards developing 

targeted therapeutic strategies for debilitating 

neurodegenerative disorders. 
 

Keywords: Neurodegenerative Comorbidities, Molecular 

Crosstalk, Bioinformatics Analysis, Network Biology. 

 

Introduction 
Alzheimer's disease (AD) is the most prevalent progressive 

cognitive disorder and is predominantly associated with 
aging8. Approximately 50 million people worldwide suffer 

from AD or other dementias and this number is expected to 

increase to 152 million by 205025. Type 2 diabetes mellitus 

(T2DM) is a prevalent metabolic disorder that has seen a 

significant increase over the past two decades10. Despite its 

high prevalence, T2DM has been extensively studied for its 

potential role as a primary etiological factor in various 

neurological disorders, including AD40. Due to its significant 

association with neurodegenerative conditions, T2DM is 

sometimes referred to as 'Type 3 diabetes' (T3DM), 

highlighting its impact on the central nervous system24. 

Recent statistics revealed that T2DM could exacerbate a 50-

60% risk of instigation of AD. Besides, a high prevalence of 

T2DM has been observed in AD patients, where around 80% 

have impaired glucose tolerance or manifest diabetes36. 

 

Ample evidence suggests that insulin resistance is the main 

culprit instigating cognitive impairment in the brain by 

altered glucose metabolism. Insulin resistance in AD 

patients is due to altered sensitivity of brain insulin 

receptors, which affects the degradation and expression of 

Tau and beta-amyloid (Aβ) precursor proteins9. 

Accumulation of amyloid fibrils in the brain causes 

cognitive impairment, while amyloid plaque deposition in 

pancreatic β-cells disrupts glucose homeostasis in T2DM 

individuals32.   

 

Moreover, chronic hyperglycemia may provoke the 

formation of AGEs, oxidative stress and inflammation 

which are further involved in AD progression29,30. While 

numerous theories are proposed for understanding the 

signaling interplay between these allied pathologies, there is 

no key regulator where promising biomarkers have been 

revealed. Indeed, the identification of promising targets can 

play a strategic role in restricting the health hazards of these 

irreversible comorbidities14,35.  

 

The present study is designed to investigate the role of 

genetic and epigenetic factors associated with these diseases. 

The genes related to T2DM and AD were comprehensively 

collected and scrutinized for their functional characteristics. 

This comprehensive investigation involved the exploration 

of key genes, transcriptional factors (TFs) and protein 

kinases (PKs) associated with both conditions which were 

predicted using DEGs by bioinformatic tools. This 

integrated approach comprises of OMIC data and 

computational analysis to elucidate the underlying 

molecular mechanisms for the pursued comorbidity. Shared 

biomarkers and pathways in T2DM-induced AD may 
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provide insights into the development of putative preventive 

drugs and therapies.  

 

Material and Methods 
Affymetrix Microarray Data: A wide search strategy was 

implemented to gather datasets pertaining to the molecular 

linkages between type 2 Diabetes Mellitus (T2DM) and 

Alzheimer's disease (AD). Utilizing the gene expression 

omnibus (GEO) repository hosted by the National Center for 

Biotechnology Information (NCBI), susceptibility datasets 

were systematically obtained. For T2DM, the search query 

employed included ("diabetes mellitus, type 2"[MeSH 

Terms] or type 2 diabetes mellitus [All Fields]) and "Homo 

sapiens"[porgn] and ("gse"[Filter] and "Expression profiling 

by array"[Filter] and "attribute name tissue"[Filter]).  

 

For AD, the search strategy comprised of ("alzheimer 

disease"[MeSH Terms] or alzheimers[All Fields]) and 

"Homo sapiens"[porgn] and ("gse"[Filter] and "Expression 

profiling by array"[Filter] and "attribute name 

tissue"[Filter]). The datasets GSE2616818 and GSE6306333 

were specifically selected for analysis, ensuring meticulous 

downloading to preserve data integrity and reproducibility. 

 

Assessment of DEGs: The DEGs were extracted using the 

platform and series matrix file of the GEO dataset through 

the R programming language with an appropriate annotation 

package. In addition, the limma package was used within the 

R framework26,31. 

 

Venn diagram to visualize the overlap of DEGs: 

Employing the `VennDiagram` package within the R 

programming environment, we executed a comparative 

analysis of differentially expressed genes (DEGs) across two 

distinct datasets5. Initially, DEG lists were procured and 

segregated into discrete vectors delineating upregulated and 

downregulated gene sets. Subsequently, the `Venn diagram 

function was invoked, delineating the input sets 

corresponding to the upregulated and downregulated DEGs 

from the respective datasets. Parameter optimization was 

conducted to refine the Venn diagram's aesthetics, including 

color schemes, opacity levels and annotation dimensions, 

ensuring optimal legibility and visual fidelity.  

 

Gene Enrichment Analysis: We utilized the enrichGO and 

enrichKEGG functions in the ClusterProfiler package to 

conduct gene ontology (GO) and Kyoto encyclopedia of 

genes and genomes (KEGG) enrichment analyses on the 

identified DEGs38. Subsequently, we employed the 

"ggplot2" package to visualize the results, aiming to evaluate 

the enriched biological pathways and functions associated 

with the DEGs. 

 

Specifically, for the GO analyses, we investigated the 

enriched categories including cellular components (CCs), 

molecular functions (MFs) and biological processes (BPs). 

This comprehensive approach allowed us to gain insights 

into the underlying biological mechanisms, providing 

valuable information for further exploration and 

interpretation. 

 

 
Figure 1: Systematic search strategy for identifying T2DM and AD datasets in the GEO repository. 
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PPI Network Analysis, MCODE and Hub Genes 

Identification: We have carried out a Protein-Protein 

Interaction (PPI) network analysis to understand the 

interactions between common DEGs between the two 

datasets GSE26168 and GSE63063 at a protein level. The 

PPI network was constructed from publicly available 

databases such as cytoscape, which depicted functional 

relationships and potential molecular mechanisms for the 

pathogenesis of T3DM12,34. Afterward, the Molecular 

Complex Detection (MCODE) analysis revealed densely 

connected regions in the PPI network, representing protein 

complexes or functional modules related to T3DM. In 

addition, we identified the hub's highly connected nodes 

ranked by topological properties such as degree centrality, 

betweenness centrality and closeness centrality. These hub 

genes act as critical regulators in the molecular network and 

provide insight towards potential therapeutic targets to be 

studied further. 

 

Integrative Analysis of TF Enrichment, PPI and Kinase 

Activity: Systematically, transcription factors were 

identified through Chromatin Immunoprecipitation 

sequencing datasets. Following this, a PPI network was 

constructed from transcription factors with putative 

functional regulatory importance using the Genes2Networks 

computational platform. Putative protein kinases were 

predicted for their possible involvement in mRNA 

expression changes using kinase enrichment analysis. 

Finally, the X2K (eXpression2Kinases) algorithm integrates 

enriched transcription factors and the predicted kinases2,6,13. 

 

Discovery of Promising Therapeutic Candidates: 

Therapeutic targets shared between Alzheimer's disease and 

type 2 diabetes mellitus have been identified through 

analysis of common differentially expressed genes using the 

drug design database. This global resource is widely utilized 

for identifying associations between drugs and gene targets. 

It serves as a valuable tool for analysing novel genes and 

establishing connections between therapeutic agents and 

their molecular targets. This tool GSEA software enabled the 

correlation of transcriptional activation patterns with 

potential drug candidates for research and pharmacological 

applications. By linking pharmacological signatures to 

DEGs, this approach may uncover drugs with inhibitory 

effects on both T2DM and AD. These insights hold promise 

for advancing therapeutic strategies targeting the shared 

molecular pathways of these complex diseases. 

 

Statistical analysis: Statistical analysis was performed 

using RStudio (https://www.R-project.org). The data was 

tested using the Wilcoxon rank sum test when it was not 

normal and used the T-test when it was normal. A ‘p’ value 

of ≤0.05 was set as a significance threshold for screening 

DEGs.   

 

Results 
Differential gene expression analysis: A comprehensive 

analysis of Differentially Expressed Genes (DEGs) was 

conducted using the R programming language and the limma 

package within the R framework. DEGs were extracted from 

the gene expression omnibus (GEO) dataset using platform 

and series matrix files, carefully considering appropriate 

annotation packages. The selection criteria for DEGs were 

established based on a log2 fold change (log2FC) magnitude 

≤ -0.1 or ≥ 0.1, accompanied by a statistically significant p-

value cutoff of ≤ 0.05. This rigorous approach identified 

2973 DEGs (1323 up-regulated and 1650 down-regulated) 

in T2DM and 577 DEGs (374 up-regulated and 203 down-

regulated) in AD.  

 

In addition to the analysis, a volcano plot was generated to 

visualize the distribution of DEGs based on their fold change 

and statistical significance (p-value). The volcano plot 

reveals distinct clusters of DEGs, with those meeting both 

the fold change and p-value criteria prominently displayed 

(Figure 2). This analysis provides valuable insights into the 

molecular mechanisms implicated in the studied 

phenomenon and forms the basis for further investigation. 

 

Venn Diagram Analysis: Venn diagram analysis revealed a 

notable convergence of 119 common DEGs (77 upregulated 

and 42 downregulated DEGs) between the two datasets, 

GSE26168 and GSE63063 (Figure 3). The cohort of 

upregulated DEGs within this shared domain likely 

constitutes a cadre of pivotal genes central to the organism’s 

adaptive response to the experimental stimuli. Conversely, 

the downregulated DEGs may indicate a concerted 

suppression of specific cellular functions or pathways, 

which are uniformly affected across the datasets. Integrating 

these findings could yield a more comprehensive 

understanding of the molecular underpinnings governing the 

observed phenotypic outcomes. 

 

Gene Enrichment Analysis: We employed enrichGO and 

enrichKEGG functions from the ClusterProfiler package, 

followed by visualization with ggplot2, to conduct gene 

enrichment analysis aimed at elucidating the biological 

pathways and functions associated with 119 commonly 

identified DEGs. Our findings revealed enriched categories 

across Cellular Components (CCs), Molecular Functions 

(MFs) and Biological Processes (BPs) in gene ontology 

(GO) analysis (Table 1). 

 

Notably, enriched CCs included the secretory granule 

lumen, cytosolic ribosome, specific granule, tertiary granule 

lumen, tertiary granule membrane, ficolin−1−rich granule 

membrane, focal adhesion, cell−substrate junction, tertiary 

granule and secretory granule membrane, indicative of roles 

in cellular organization and signaling. Enriched MFs 

primarily involved oxidoreductase activity, acting on 

NAD(P)H, oxygen as acceptor, 

phosphatidylinositol−3−phosphate binding, 

superoxide−generating NAD(P)H oxidase activity, 
complement receptor activity, IgG binding, 

superoxide−generating NADPH oxidase activator activity, 

immune receptor activity, carbohydrate binding, 
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double−stranded RNA binding and pattern recognition 

receptor activity.  

 

Enriched BPs encompassed SRP−dependent cotranslational 

protein targeting to membrane, myeloid leukocyte 

migration, interleukin−8 production, positive regulation of 

interleukin−8 production, regulation of interleukin−8 

production, regulation of response to biotic stimulus, 

astrocyte differentiation, positive regulation of response to 

biotic stimulus, neutrophil activation involved in immune 

response and neutrophil degranulation, highlighting the 

diverse functional roles of DEGs in cellular homeostasis and 

environmental adaptation.  

 

Moreover, KEGG analysis identified enriched pathways 

such as the biosynthesis of amino acids, platelet activation, 

ribosome, lipid and atherosclerosis, ferroptosis, osteoclast 

differentiation, endocytosis, pentose phosphate pathway, 

neutrophil extracellular trap formation and Coronavirus 

disease − COVID−19, underscoring potential involvement 

of DEGs in critical signaling cascades and regulatory 

networks (Table 2). Visualization of results facilitated the 

interpretation and exploration of enriched biological 

pathways and functions associated with DEGs, offering 

valuable insights into the molecular mechanisms driving 

observed gene expression changes in our study, thus laying 

the foundation for further investigation and interpretation. 

 

Network Dynamics in T3DM Based on Hub Gene 
Centrality and MCODE Clustering: The PPI network 

analysis was meticulously conducted by querying publicly 

available databases, notably STRING which aggregates 

protein interaction data from various sources, including 

experimental results, computational prediction methods and 

public text collections. The resultant network was visualized 

using the cytoscape software (Figure 4). 

 

Enhancing the analysis, we applied the MCODE algorithm, 

a cytoscape plugin designed to detect densely connected 

regions within large PPI networks. These regions indicate 

protein complexes or functional modules that play pivotal 

roles in cellular processes. Our MCODE analysis, 

parameterized with a node score cutoff of 0.2 and a k-core 

threshold of 2, identified seven clusters (Table 3). The first 

cluster displayed a high degree of interconnectivity and 

biological significance, suggesting its involvement in crucial 

pathways integral to disease progression (Figure 5).  

 

 
Figure 2: Volcano plot (a) DEGs in GSE26168 (b) DEGs in GSE63063. 

 

 
Figure 3: Venn diagram (a) Common down-regulated DEGs in GSE26168 and GSE63063  

(b) Common up-regulated DEGs in GSE26168 and GSE63063. 
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Table 1 

Gene Ontology (Cellular Components (CCs), Molecular Functions (MFs), Biological Processes (BPs) of 119 common 

DEGs in GSE26168 and GSE63063 

 ID Description 
Gene 

Ratio 
Bg Ratio p value p. adjust q value gene ID Count 

C
C

s 

GO:0

0306

67 

Secretory 

granule 

membrane 

16/112 306/19559 
2.1457

5E-11 

4.93522E

-09 

3.72682E

-09 

FCGR2A/SIRPA/SIGLEC5/CA4/CX

CR1/SELL/MGAM/CLEC12A/CD1

4/FPR1/ADGRG3/ADGRE5/MME/

CD68/PLAUR/FPR2 

16 

GO:0

0708

20 

Tertiary 

granule 
10/112 164/19559 

3.5406

1E-08 

4.0717E-

06 

3.07474E

-06 

SIRPA/SIGLEC5/PGLYRP1/MGAM

/CLEC12A/FPR1/TIMP2/FPR2/MM

P9/ALDOA 

10 

GO:0

0300

55 

Cell-substrate 

junction 
13/112 423/19559 

9.2016

8E-07 

7.05462E

-05 

5.32729E

-05 

RPS29/RPL10A/ANXA1/RPS10/RP

L27/ACTN1/PCBP2/VIM/HSPA1B/

ADGRE5/MME/PLAUR/FERMT3 

13 

GO:0

0059

25 

Focal 

adhesion 
12/112 415/19559 

4.6354

5E-06 

0.000266

538 

0.000201

276 

RPS29/RPL10A/ANXA1/RPS10/RP

L27/ACTN1/PCBP2/VIM/HSPA1B/

ADGRE5/MME/PLAUR 

12 

GO:0

1010

03 

Ficolin-1-rich 

granule 

membrane 

5/112 61/19559 
2.5932

6E-05 

0.001192

902 

0.000900

818 

SIRPA/SIGLEC5/MGAM/FPR1/FPR

2 
5 

GO:0

0708

21 

Tertiary 

granule 

membrane 

5/112 73/19559 
6.1999

4E-05 

0.002376

642 

0.001794

718 

SIRPA/SIGLEC5/MGAM/CLEC12A

/FPR2 
5 

GO:1

9047

24 

Tertiary 

granule lumen 
4/112 55/19559 

0.0002

77467 

0.009116

779 

0.006884

525 
PGLYRP1/TIMP2/MMP9/ALDOA 4 

GO:0

0425

81 

Specific 

granule 
6/112 160/19559 

0.0003

19522 

0.009186

263 

0.006936

995 

PGLYRP1/CLEC12A/ADGRG3/TI

MP2/PLAUR/FPR2 
6 

GO:0

0226

26 

Cytosolic 

ribosome 
5/112 110/19559 

0.0004

27178 

0.009899

829 

0.007475

843 

RPS29/RPL10A/RPS10/RPL27/RSL

24D1 
5 

GO:0

0347

74 

Secretory 

granule lumen 
8/112 322/19559 

0.0005

33878 

0.009899

829 

0.007475

843 

CYB5R3/ACTN1/SERPINA1/PGLY

RP1/TIMP2/FERMT3/GRN/ALDOA 
8 

M
F

s 

GO:0

0381

87 

Pattern 

recognition 

receptor 

activity 

4/111 23/18352 
1.0271

4E-05 

0.003297

113 

0.003135

474 
LY96/TLR8/PGLYRP1/CD14 4 

GO:0

0037

25 

Double-

stranded RNA 

binding 

5/111 76/18352 
9.7058

1E-05 

0.015577

83 

0.014814

136 

LSM14A/ACTN1/VIM/TLR8/ADA

R 
5 

GO:0

0302

46 

Carbohydrate 

binding 
7/111 267/18352 

0.0011

97174 

0.101474

351 

0.096499

629 

CLEC4A/TALDO1/SIGLEC5/SELL/

MGAM/CLEC12A/ALDOA 
7 

GO:0

1403

75 

Immune 

receptor 

activity 

5/111 135/18352 
0.0013

73988 

0.101474

351 

0.096499

629 
CXCR1/IL17RA/FPR1/CSF3R/FPR2 5 

GO:0

0161

76 

Superoxide-

generating 

NADPH 

oxidase 

activator 

activity 

2/111 10/18352 
0.0015

80597 

0.101474

351 

0.096499

629 
NCF4/NCF1C 2 

GO:0

0198

64 

IgG binding 2/111 11/18352 
0.0019

24219 

0.102945

721 

0.097898

866 
FCGRT/FCGR2A 2 
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GO:0

0048

75 

Complement 

receptor 

activity 

2/111 12/18352 
0.0022

99957 

0.105469

44 

0.100298

861 
FPR1/FPR2 2 

GO:0

0161

75 

Superoxide-

generating 

NAD(P)H 

oxidase 

activity 

2/111 13/18352 
0.0027

07416 

0.108635

067 

0.103309

295 
NCF4/NCF1C 2 

GO:0

0322

66 

Phosphatidylin

ositol-3-

phosphate 

binding 

3/111 48/18352 
0.0030

55877 

0.108992

952 

0.103649

634 
VPS36/NCF4/NCF1C 3 

GO:0

0506

64 

Oxidoreductas

e activity, 

acting on 

NAD(P)H, 

oxygen as 

acceptor 

2/111 19/18352 
0.0057

96707 

0.177438

309 

0.168739

497 
NCF4/NCF1C 2 

B
P

s 

GO:0

0433

12 

Neutrophil 

degranulation 
24/109 487/18866 

4.7416

4E-16 

6.18165E

-13 

5.71653E

-13 

CYB5R3/ABR/FCGR2A/HSPA1B/S

IRPA/SIGLEC5/SERPINA1/PGLYR

P1/CXCR1/SELL/MGAM/CLEC12

A/CD14/FPR1/ADGRG3/TIMP2/AD

GRE5/MME/CD68/PLAUR/FPR2/M

MP9/GRN/ALDOA 

24 

GO:0

0022

83 

Neutrophil 

activation 

involved in 

immune 

response 

24/109 490/18866 
5.4415

9E-16 

6.18165E

-13 

5.71653E

-13 

CYB5R3/ABR/FCGR2A/HSPA1B/S

IRPA/SIGLEC5/SERPINA1/PGLYR

P1/CXCR1/SELL/MGAM/CLEC12

A/CD14/FPR1/ADGRG3/TIMP2/AD

GRE5/MME/CD68/PLAUR/FPR2/M

MP9/GRN/ALDOA 

24 

GO:0

0028

33 

Positive 

regulation of 

response to 

biotic stimulus 

8/109 251/18866 
0.0001

04896 

0.058995

262 

0.054556

404 

LY96/CLEC4A/LSM14A/MATR3/T

LR8/FYN/FPR2/GRN 
8 

GO:0

0487

08 

Astrocyte 

differentiation 
5/109 83/18866 

0.0001

19125 

0.058995

262 

0.054556

404 
NOTCH1/VIM/STAT3/FPR2/GRN 5 

GO:0

0028

31 

Regulation of 

response to 

biotic stimulus 

10/109 409/18866 
0.0001

29831 

0.058995

262 

0.054556

404 

LY96/CLEC4A/LSM14A/MATR3/P

CBP2/TLR8/FYN/ADAR/FPR2/GR

N 

10 

GO:0

0326

77 

Regulation of 

interleukin-8 

production 

5/109 93/18866 
0.0002

03706 

0.069080

126 

0.063882

474 

ANXA1/HSPA1B/TLR8/STAT3/CD

14 
5 

GO:0

0327

57 

Positive 

regulation of 

interleukin-8 

production 

4/109 54/18866 
0.0002

66942 

0.069080

126 

0.063882

474 
HSPA1B/TLR8/STAT3/CD14 4 

GO:0

0326

37 

Interleukin-8 

production 
5/109 101/18866 

0.0002

99329 

0.069080

126 

0.063882

474 

ANXA1/HSPA1B/TLR8/STAT3/CD

14 
5 

GO:0

0975

29 

Myeloid 

leukocyte 

migration 

7/109 222/18866 
0.0003

06591 

0.069080

126 

0.063882

474 

ANXA1/SIRPA/CXCR1/IL17RA/D

YSF/CSF3R/FPR2 
7 

GO:0

0066

14 

SRP-

dependent 

cotranslational 

protein 

targeting to 

membrane 

5/109 105/18866 
0.0003

58302 

0.069080

126 

0.063882

474 

RPS29/SRP9/RPL10A/RPS10/RPL2

7 
5 
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Table 2 

KEGG analysis of 119 common DEGs in GSE26168 and GSE63063 

ID Description 
Gene

Ratio 
Bg Ratio p value p. adjust q value gene ID Count 

hsa0

5171 

Coronavirus 

disease - 

COVID-19 

9/62 232/8223 
5.34605

E-05 

0.007965

618 
0.007484474 

RPS29/RPL10A/RPS10/RPL27/

RSL24D1/FCGR2A/TLR8/STA

T3/ADAR 

9 

hsa0

4613 

Neutrophil 

extracellular trap 

formation 

7/62 190/8223 
0.00052

8727 

0.039390

181 
0.037010908 

VDAC3/FCGR2A/NCF4/PADI

4/TLR8/FPR1/FPR2 
7 

hsa0

0030 

Pentose 

phosphate 

pathway 

3/62 30/8223 
0.00143

3488 

0.0711965

94 
0.066896129 TALDO1/TKT/ALDOA 3 

hsa0

4144 
Endocytosis 7/62 251/8223 

0.00266

6655 

0.080169

71 
0.075327245 

VPS36/CAPZA2/EHD1/IQSEC

1/HSPA1B/RAB11FIP1/CXCR

1 

7 

hsa0

4380 

Osteoclast 

differentiation 
5/62 128/8223 

0.00269

0259 

0.080169

71 
0.075327245 

GAB2/FCGR2A/NCF4/SIRPA/

FYN 
5 

hsa0

4216 
Ferroptosis 3/62 41/8223 

0.00354

8664 

0.088125

151 
0.082802155 VDAC3/PCBP2/ACSL1 3 

hsa0

5417 

Lipid and 

atherosclerosis 
6/62 215/8223 

0.00541

0505 

0.1151664

56 
0.108210093 

LY96/NCF4/HSPA1B/STAT3/C

D14/MMP9 
6 

hsa0

3010 
Ribosome 5/62 167/8223 

0.00828

6685 

0.154339

512 
0.145016991 

RPS29/RPL10A/RPS10/RPL27/

RSL24D1 
5 

hsa0

4611 

Platelet 

activation 
4/62 124/8223 

0.01402

1524 

0.232134

125 
0.218112601 

FCGR2A/TBXAS1/FYN/FER

MT3 
4 

hsa0

1230 

Biosynthesis of 

amino acids 
3/62 75/8223 

0.01876

2433 

0.279560

253 
0.262674063 TALDO1/TKT/ALDOA 3 

hsa0

4936 

Alcoholic liver 

disease 
4/62 142/8223 

0.02196

0273 

0.297461

876 
0.27949438 LY96/ACADM/IL17RA/CD14 4 

hsa0

5150 

Staphylococcus 

aureus infection 
3/62 96/8223 

0.03554

1321 

0.414236

288 
0.389215304 FCGR2A/FPR1/FPR2 3 

hsa0

4640 

Hematopoietic 

cell lineage 
3/62 99/8223 

0.03840

6482 

0.414236

288 
0.389215304 CD14/CSF3R/MME 3 

hsa0

0071 

Fatty acid 

degradation 
2/62 43/8223 

0.04144

5526 

0.414236

288 
0.389215304 ACADM/ACSL1 2 

hsa0

4620 

Toll-like 

receptor 

signaling 

pathway 

3/62 104/8223 
0.04343

6864 

0.414236

288 
0.389215304 LY96/TLR8/CD14 3 

hsa0

4066 

HIF-1 signaling 

pathway 
3/62 109/8223 

0.04878

1711 

0.414236

288 
0.389215304 MKNK2/STAT3/ALDOA 3 

 
Furthermore, a Hub Genes analysis was performed to 

discern critical regulators within the PPI network. Hub genes 

were identified and prioritized based on their topological 

properties, quantified by metrics such as Degree, MCC, 

Closeness and MNC. These centrality measures were 

instrumental in pinpointing hub genes such as MNDA, 

FCER1G, ALOX5AP, NCF2, CSF3R, FPR1, FGR and 

HCK, which are hypothesized to be central drivers of 

molecular interactions in the pathogenesis of T3DM (Figure 

6). Identifying these hub genes not only enhances our 

understanding of the diseases’ molecular underpinnings but 

also underscores potential therapeutic targets warranting 

further exploration and validation. 
 

Integrative Analysis to explore the Transcriptional 
Regulatory Landscape: Transcription Factor Enrichment 

Analysis (TFEA) identified 11 putatively enriched 

transcription factors (TFs) governing the expression of 

DEGs based on ChIP-seq data. Notably, TFs such as 

RUNX1, SPI1, POU5F1, RELA, NANOG, GATA2, 

GATA1, KLF4, TCF3, NFE2L2 and REST were among the 

top enriched regulators, suggesting their potential roles in 

orchestrating gene expression changes (Figure 7a) (Table 4). 

Subsequent construction of a PPI network connecting these 

enriched TFs using the Genes2Networks (G2N) method 

revealed a complex network of interactions, highlighting 

potential cooperative and regulatory relationships among the 

identified TFs (Figure 7b). Kinase enrichment analysis 

(KEA) predicted several protein kinases potentially 
regulating mRNA expression changes, with kinases such as 

HIPK2, ERK1, MAPK1, MAPK3, MAPK14 and 

CK2ALPHA (Figure 7c). 
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Figure 4: PPI networks. 

 

 
Figure 5: First MCODE cluster (Score 33.65) displayed a high degree of interconnectivity and biological significance. 
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Table 3 

MCODE Clusters. 

Cluster Score Node Edge Network 

Cluster 1 33.65 41 673 

 

 
 

Cluster 2 4 7 12 

 

 
 

Cluster 3 3.556 10 16 

 

 
 

Cluster 4 3 5 6 

 

 
 

Cluster 5 2.857 8 10 

 

 
 

Cluster 6 2.667 4 4 

 

 
 

Cluster 7 2.5 5 5 

 

 
 

 

 
Figure 6: Hub genes (a) Degree (b) MCC (c) Closeness (d) MNC (e) UpSet plot. 
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Integration of enriched TFs and kinases via known PPIs 

using the X2K algorithm generated a comprehensive 

upstream pathway, unveiling intricate regulatory 

mechanisms underlying gene expression alterations (Figure 

7d). This integrative analysis provides valuable insights into 

the regulatory landscape governing gene expression 

dynamics in the context of the studied biological system. 

Understanding the structural properties of small molecules 

in relation to their receptor sensitivity necessitates a 

comprehensive examination of the protein-drug connection. 

The ten most important therapeutic drugs interacting with 

the DEGs have been determined based on their P value (p < 

0.01) utilizing the EnrichR program from the DSigDB 

database.

 

 
Figure 7: Transcriptional Regulatory Landscape (a) Transcription Factor Enrichment Analysis (TFEA)  

(b) Protein-Protein Interaction Expansion (c) Kinase Enrichment Analysis (KEA) (d) eXpression2Kinases Network. 

 

Table 4 

Enriched transcription factors (TFs) governing the expression of DEGs. 

Rank Transcription Factor Hypergeometric p-value Enriched Targets 

1 RUNX1 0.01564 FCER1G; FGR; ALOX5AP 

2 SPI1 0.02505 NCF2; MNDA; ALOX5AP 

3 SPI1 0.07709 NCF2; ALOX5AP 

4 POU5F1 0.112 HCK 

5 RELA 0.1987 NCF2 

6 NANOG 0.2391 HCK 

7 GATA2 0.2999 MNDA 

8 GATA1 0.3114 CSF3R 

9 KLF4 0.3681 HCK 

10 TCF3 0.3738 HCK 

11 NFE2L2 0.3786 ALOX5AP 

12 REST 0.4518 CSF3R 

The predicted drugs were allopurinol CTD00005353, 

neostigmine bromide PC3 Down, indomethacin CTD 

00006147, copper sulfate CTD00007279, methyl 

methanesulphonate CTD 00006304, hydrogen peroxide 

CTD00006118, phenethyl isothiocyanate CTD 00002443 

and Diclofenac CTD 00005804. 

 

Comprehensive intricate signaling between T2DM and 

AD based on genetic and epigenetic factors 

HIPK2 Regulation: The intersection of T2DM and AD 

(T3DM) is particularly interesting due to the shared 

molecular pathways involving HIPK2. In individuals with 

T2DM, the dysregulation of HIPK2 may exacerbate AD 

pathology. The aberrant activity of HIPK2 in T2DM could 

further promote Aβ accumulation and tau 

hyperphosphorylation, thereby intensifying neuronal 

damage and cognitive decline associated with AD16,27,28,39. 

Moreover, the interplay between insulin resistance, a 
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defining characteristic of T3DM, suggests a bidirectional 

relationship where each condition may influence the 

progression of the other. Insulin resistance has been shown 

to affect brain metabolism and function, potentially 

contributing to the development and progression of AD20,21 

(Figure 8). 

 

ERK1 Regulation: The interplay between T3DM is 

underscored by the observation that insulin resistance and 

the resultant hyperglycaemia may exert deleterious effects 

on brain function. Specifically, alterations in ERK1 activity 

associated with T2DM could compromise of synaptic 

integrity and disrupt cognitive functions. This suggests a 

mechanistic link whereby T2DM-associated metabolic 

disturbances might contribute to the cognitive deficit 

characteristic of AD27,37. Moreover, dysregulated ERK1/2 

signaling has been identified in patients with AD, with 

potential implications for the multifaceted underlying 

pathologies of the disease including amyloid-β plaque 

formation, tau phosphorylation and neuroinflammation. The 

dysregulation of ERK1 in T2DM could thus have a 

cascading effect on these AD-related pathologies, 

potentially exacerbating the disease process19 (Figure 8). 

 

MAPK1, MAPK3 and MAPK14 Regulation: MAPK1, 

MAPK3 and MAPK14 are integral components of the 

Mitogen-Activated Protein Kinase (MAPK) family, a group 

of serine/threonine-specific protein kinases involved in a 

myriad of cellular processes. These kinases play pivotal 

roles in transducing extracellular signals to the cellular 

nucleus, thereby influencing gene expression and cellular 

responses. The dysregulation of MAPK1, MAPK3 and 

MAPK14 in T2DM could potentially influence the 

pathophysiology of AD17.  

 

Insulin resistance and chronic inflammation associated with 

T2DM may exacerbate synaptic dysfunction and 

neuroinflammation, thereby contributing to the cognitive 

decline observed in AD4. The interplay between these 

kinases in T3DM underscores the complex relationship 

between metabolic disorders and neurodegenerative 

diseases. 

 

Understanding the molecular mechanisms by which 

MAPK1, MAPK3 and MAPK14 contribute to the 

pathogenesis of T3DM could provide insights into potential 

therapeutic targets for these conditions. Targeting the 

dysregulated MAPK signaling in T2DM may improve 

metabolic outcomes and mitigate the risk or progression of 

AD (Figure 8). 

 

CK2ALPHA Regulation: CK2ALPHA is also a 

serine/threonine kinase that plays a crucial role in various 

cellular processes including glucose metabolism and insulin 

signaling3,23. The interplay between T3DM is particularly 
noteworthy in the context of CK2ALPHA activity. The 

metabolic disturbances associated with T2DM such as 

hyperglycaemia and insulin resistance, could influence the 

activity of CK2ALPHA10,15. This, in turn, may exacerbate 

tau pathology by promoting further tau phosphorylation. The 

presence of T2DM could thus potentiate the 

neurodegenerative processes in AD, potentially accelerating 

the onset and progression of cognitive decline1,7. Moreover, 

the dysregulation of CK2ALPHA in T2DM may have 

broader implications for neuronal health. Given the kinase’s 

involvement in cell survival, apoptosis and response to 

oxidative stress, its dysfunction could contribute to the 

neuronal cell loss observed in AD (Figure 8). 

 

Discussion 
The current study aims to explore the molecular interplay 

between these comorbidities using bioinformatics tools and 

network biology. The comprehensive analysis of Affymetrix 

microarray data from datasets GSE26168 and GSE63063 

revealed significant molecular linkages between T2DM and 

AD, commonly known as T3DM. After stringent 

preprocessing and quality control steps, differential gene 

expression analysis identified many genes dysregulated in 

both conditions. Notably, several key genes implicated in 

insulin signaling pathways, such as FCER1G, FGR, 

ALOX5AP, NCF2 and CSF3R, exhibited altered expression 

patterns across both datasets. Additionally, genes associated 

with neuroinflammation and synaptic dysfunction including 

FCER1G, FGR, ALOX5AP, NCF2, HCK, CSF3R, 

displayed differential expression profiles consistent with the 

pathogenesis of T3DM. 

 

Furthermore, pathway enrichment analysis highlighted the 

involvement of shared biological processes including 

SRP−dependent cotranslational protein targeting to 

membrane, myeloid leukocyte migration, interleukin−8 

production, positive regulation of interleukin−8 production, 

regulation of interleukin−8 production, regulation of 

response to biotic stimulus, astrocyte differentiation, 

positive regulation of response to biotic stimulus, neutrophil 

activation involved in immune response and neutrophil 

degranulation, underscoring the interconnectedness of these 

two complex diseases at the molecular level. 

 

Network analysis unveiled intricate interactions among 

dysregulated genes, pinpointing central hubs and potential 

regulatory nodes driving the pathophysiology of T3DM 

comorbidity. Moreover, integrating clinical metadata 

enabled the identification of candidate biomarkers 

associated with disease progression and severity. 

Collectively, these findings provide novel insights into the 

molecular underpinnings of T3DM interplay, laying the 

groundwork for targeted therapeutic strategies and precision 

medicine approaches to mitigate the burden of these 

devastating neurodegenerative disorders. 

 

Conclusion 
Comprehensively, the current study investigating molecular 

overlaps between T2DM and AD explored several key genes 

MNDA, FCER1G, ALOX5AP, NCF2, CSF3R, FPR1, FGR 

and HCK that are commonly expressed in these pathology.
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Figure 8: TF-Gene-Kinase Dynamics in T2DM and AD, or T3DM Pathogenesis. 

 

These genes fall into critical biological pathways including 

insulin signaling, immune response and neuroinflammation, 

all of which are key pathophysiology factors between both 

maladies. Moreover, the central regulator of these 

investigated genes has been identified as RUNX1, SPI1 and 

RELA transcription factors that may orchestrate a complex 

network of interactions at the molecular level.  

 

These interactions further include kinase pathways such as 

MAPK1, MAPK3, MAPK14 and CK2ALPHA, which are 

critically involved in cellular stress responses, inflammatory 

signaling, oxidative stress response and synaptic function. 

Interestingly, the implication of RUNX1 and SPI1 modulate 

the MAPK signaling pathways which play a fundamental 

role in cellular responses to stress and inflammation. This 

shared molecular framework suggests common 

pathophysiological landscape exacerbating T2DM and AD. 

The potential biomarkers and therapeutic targets in this 

research, comprising DEGs, transcription factors and 

kinases, offer exciting opportunities for the development of 

novel therapeutic agents that modulate the implicated 

pathways and, therefore, address the interlinked pathologies 

of T2DM and AD. The illumination of these molecular 

connections not only deepens our understanding of the 

diseases but also forms the foundation for future research to 

be directed at exploration and validation of these biomarkers 

and targets towards the development of novel treatments for 

these chronic conditions. 
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