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Abstract

Type 2 diabetes mellitus (T2DM) has been globally
recognized to trigger the risk of Alzheimer's Disease
(AD) [commonly known as Type 3 diabetes (T3DM)]
which has towering prevalence across the world. This
study delineates the molecular crosstalk of these
comorbidities using bioinformatics and network
biology. Stringent analysis of Affymetrix microarray
data from datasets GSE26168 and GSE63063 has
provided substantial molecular correlations of T2DM
to AD. Estimating common differentially expressed
genes, regulating transcriptional factors, involving
signaling kinase and coinciding biological processes of
these insidious pathologies open new windows for
therapeutic targets and diagnostic biomarkers.
Numerous pivotal genes including FCER1G, FGR,
ALOX5AP, NCF2 and CSF3R, have been studied to
regulate insulin signalling pathways and interestingly
noticed differential expression patterns in AD.

A bunch of DEG genes from this series are also
involved in  neuroinflammation and synaptic
dysfunction concurring the molecular interplay
between T2DM and AD. The results of the network
analysis further revealed complex interrelations
between the dysregulated genes, central hubs and
potential  regulatory nodes critical to the
pathophysiology of T3DM comorbidity. Overall, these
findings unveil the molecular underpinnings of T3DM
interplay and provide a roadmap towards developing
targeted therapeutic strategies for debilitating
neurodegenerative disorders.

Keywords: Neurodegenerative Comorbidities, Molecular
Crosstalk, Bioinformatics Analysis, Network Biology.

Introduction

Alzheimer's disease (AD) is the most prevalent progressive
cognitive disorder and is predominantly associated with
aging®. Approximately 50 million people worldwide suffer
from AD or other dementias and this number is expected to
increase to 152 million by 20502, Type 2 diabetes mellitus

https://doi.org/10.25303/2012rjbt1090122

(T2DM) is a prevalent metabolic disorder that has seen a
significant increase over the past two decades®. Despite its
high prevalence, T2DM has been extensively studied for its
potential role as a primary etiological factor in various
neurological disorders, including AD*. Due to its significant
association with neurodegenerative conditions, T2DM is
sometimes referred to as Type 3 diabetes' (T3DM),
highlighting its impact on the central nervous system?.
Recent statistics revealed that T2DM could exacerbate a 50-
60% risk of instigation of AD. Besides, a high prevalence of
T2DM has been observed in AD patients, where around 80%
have impaired glucose tolerance or manifest diabetes®.

Ample evidence suggests that insulin resistance is the main
culprit instigating cognitive impairment in the brain by
altered glucose metabolism. Insulin resistance in AD
patients is due to altered sensitivity of brain insulin
receptors, which affects the degradation and expression of
Tau and beta-amyloid (AB) precursor proteins®.
Accumulation of amyloid fibrils in the brain causes
cognitive impairment, while amyloid plaque deposition in
pancreatic B-cells disrupts glucose homeostasis in T2DM
individuals®2.

Moreover, chronic hyperglycemia may provoke the
formation of AGEs, oxidative stress and inflammation
which are further involved in AD progression?3°. While
numerous theories are proposed for understanding the
signaling interplay between these allied pathologies, there is
no key regulator where promising biomarkers have been
revealed. Indeed, the identification of promising targets can
play a strategic role in restricting the health hazards of these
irreversible comorbidities'4%.

The present study is designed to investigate the role of
genetic and epigenetic factors associated with these diseases.
The genes related to T2DM and AD were comprehensively
collected and scrutinized for their functional characteristics.
This comprehensive investigation involved the exploration
of key genes, transcriptional factors (TFs) and protein
kinases (PKs) associated with both conditions which were
predicted using DEGs by bioinformatic tools. This
integrated approach comprises of OMIC data and
computational analysis to elucidate the underlying
molecular mechanisms for the pursued comorbidity. Shared
biomarkers and pathways in T2DM-induced AD may
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provide insights into the development of putative preventive
drugs and therapies.

Material and Methods

Affymetrix Microarray Data: A wide search strategy was
implemented to gather datasets pertaining to the molecular
linkages between type 2 Diabetes Mellitus (T2DM) and
Alzheimer's disease (AD). Utilizing the gene expression
omnibus (GEO) repository hosted by the National Center for
Biotechnology Information (NCBI), susceptibility datasets
were systematically obtained. For T2DM, the search query
employed included ("diabetes mellitus, type 2"[MeSH
Terms] or type 2 diabetes mellitus [All Fields]) and "Homo
sapiens”[porgn] and (“gse"[Filter] and "Expression profiling
by array"[Filter] and "attribute name tissue"[Filter]).

For AD, the search strategy comprised of (“alzheimer
disease"[MeSH Terms] or alzheimers[All Fields]) and
"Homo sapiens”[porgn] and (“gse"[Filter] and "Expression
profiling by array"[Filter] and “attribute name
tissue"[Filter]). The datasets GSE26168'% and GSE630633°
were specifically selected for analysis, ensuring meticulous
downloading to preserve data integrity and reproducibility.

Assessment of DEGs: The DEGs were extracted using the
platform and series matrix file of the GEO dataset through
the R programming language with an appropriate annotation
package. In addition, the limma package was used within the
R framework?631,
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Venn diagram to visualize the overlap of DEGs:
Employing the “VennDiagram™ package within the R
programming environment, we executed a comparative
analysis of differentially expressed genes (DEGS) across two
distinct datasets®. Initially, DEG lists were procured and
segregated into discrete vectors delineating upregulated and
downregulated gene sets. Subsequently, the “Venn diagram
function was invoked, delineating the input sets
corresponding to the upregulated and downregulated DEGs
from the respective datasets. Parameter optimization was
conducted to refine the Venn diagram'’s aesthetics, including
color schemes, opacity levels and annotation dimensions,
ensuring optimal legibility and visual fidelity.

Gene Enrichment Analysis: We utilized the enrichGO and
enrichKEGG functions in the ClusterProfiler package to
conduct gene ontology (GO) and Kyoto encyclopedia of
genes and genomes (KEGG) enrichment analyses on the
identified DEGs®. Subsequently, we employed the
"ggplot2" package to visualize the results, aiming to evaluate
the enriched biological pathways and functions associated
with the DEGs.

Specifically, for the GO analyses, we investigated the
enriched categories including cellular components (CCs),
molecular functions (MFs) and biological processes (BPs).
This comprehensive approach allowed us to gain insights
into the underlying biological mechanisms, providing
valuable information for further exploration and
interpretation.
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Figure 1: Systematic search strategy for identifying T2DM and AD datasets in the GEO repository.
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PPl Network Analysis, MCODE and Hub Genes
Identification: We have carried out a Protein-Protein
Interaction (PPI) network analysis to understand the
interactions between common DEGs between the two
datasets GSE26168 and GSE63063 at a protein level. The
PPl network was constructed from publicly available
databases such as cytoscape, which depicted functional
relationships and potential molecular mechanisms for the
pathogenesis of T3DM?'234 Afterward, the Molecular
Complex Detection (MCODE) analysis revealed densely
connected regions in the PPI network, representing protein
complexes or functional modules related to T3DM. In
addition, we identified the hub's highly connected nodes
ranked by topological properties such as degree centrality,
betweenness centrality and closeness centrality. These hub
genes act as critical regulators in the molecular network and
provide insight towards potential therapeutic targets to be
studied further.

Integrative Analysis of TF Enrichment, PPl and Kinase
Activity: Systematically, transcription factors were
identified through  Chromatin  Immunoprecipitation
sequencing datasets. Following this, a PPl network was
constructed from transcription factors with putative
functional regulatory importance using the Genes2Networks
computational platform. Putative protein kinases were
predicted for their possible involvement in mRNA
expression changes using kinase enrichment analysis.
Finally, the X2K (eXpression2Kinases) algorithm integrates
enriched transcription factors and the predicted kinases?®13,

Discovery of Promising Therapeutic Candidates:
Therapeutic targets shared between Alzheimer's disease and
type 2 diabetes mellitus have been identified through
analysis of common differentially expressed genes using the
drug design database. This global resource is widely utilized
for identifying associations between drugs and gene targets.
It serves as a valuable tool for analysing novel genes and
establishing connections between therapeutic agents and
their molecular targets. This tool GSEA software enabled the
correlation of transcriptional activation patterns with
potential drug candidates for research and pharmacological
applications. By linking pharmacological signatures to
DEGs, this approach may uncover drugs with inhibitory
effects on both T2DM and AD. These insights hold promise
for advancing therapeutic strategies targeting the shared
molecular pathways of these complex diseases.

Statistical analysis: Statistical analysis was performed
using RStudio (https://www.R-project.org). The data was
tested using the Wilcoxon rank sum test when it was not
normal and used the T-test when it was normal. A ‘p’ value
of <0.05 was set as a significance threshold for screening
DEGs.

Results

Differential gene expression analysis: A comprehensive
analysis of Differentially Expressed Genes (DEGs) was

https://doi.org/10.25303/2012rjbt1090122
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conducted using the R programming language and the limma
package within the R framework. DEGs were extracted from
the gene expression omnibus (GEO) dataset using platform
and series matrix files, carefully considering appropriate
annotation packages. The selection criteria for DEGs were
established based on a log2 fold change (log2FC) magnitude
<-0.1 or > 0.1, accompanied by a statistically significant p-
value cutoff of < 0.05. This rigorous approach identified
2973 DEGs (1323 up-regulated and 1650 down-regulated)
in T2DM and 577 DEGs (374 up-regulated and 203 down-
regulated) in AD.

In addition to the analysis, a volcano plot was generated to
visualize the distribution of DEGs based on their fold change
and statistical significance (p-value). The volcano plot
reveals distinct clusters of DEGs, with those meeting both
the fold change and p-value criteria prominently displayed
(Figure 2). This analysis provides valuable insights into the
molecular mechanisms implicated in the studied
phenomenon and forms the basis for further investigation.

Venn Diagram Analysis: Venn diagram analysis revealed a
notable convergence of 119 common DEGs (77 upregulated
and 42 downregulated DEGs) between the two datasets,
GSE26168 and GSE63063 (Figure 3). The cohort of
upregulated DEGs within this shared domain likely
constitutes a cadre of pivotal genes central to the organism’s
adaptive response to the experimental stimuli. Conversely,
the downregulated DEGs may indicate a concerted
suppression of specific cellular functions or pathways,
which are uniformly affected across the datasets. Integrating
these findings could vyield a more comprehensive
understanding of the molecular underpinnings governing the
observed phenotypic outcomes.

Gene Enrichment Analysis: We employed enrichGO and
enrichKEGG functions from the ClusterProfiler package,
followed by visualization with ggplot2, to conduct gene
enrichment analysis aimed at elucidating the biological
pathways and functions associated with 119 commonly
identified DEGs. Our findings revealed enriched categories
across Cellular Components (CCs), Molecular Functions
(MFs) and Biological Processes (BPs) in gene ontology
(GO) analysis (Table 1).

Notably, enriched CCs included the secretory granule
lumen, cytosolic ribosome, specific granule, tertiary granule
lumen, tertiary granule membrane, ficolin—1-rich granule
membrane, focal adhesion, cell-substrate junction, tertiary
granule and secretory granule membrane, indicative of roles
in cellular organization and signaling. Enriched MFs
primarily involved oxidoreductase activity, acting on

NAD(P)H, oxygen as acceptor,
phosphatidylinositol—-3—phosphate binding,
superoxide—generating NAD(P)H  oxidase activity,
complement receptor activity, IgG binding,
superoxide—generating NADPH oxidase activator activity,
immune  receptor activity, carbohydrate  binding,
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double—stranded RNA binding and pattern recognition
receptor activity.

Enriched BPs encompassed SRP—dependent cotranslational
protein targeting to membrane, myeloid leukocyte
migration, interleukin—8 production, positive regulation of
interleukin—8 production, regulation of interleukin—8
production, regulation of response to biotic stimulus,
astrocyte differentiation, positive regulation of response to
biotic stimulus, neutrophil activation involved in immune
response and neutrophil degranulation, highlighting the
diverse functional roles of DEGs in cellular homeostasis and
environmental adaptation.

Moreover, KEGG analysis identified enriched pathways
such as the biosynthesis of amino acids, platelet activation,
ribosome, lipid and atherosclerosis, ferroptosis, osteoclast
differentiation, endocytosis, pentose phosphate pathway,
neutrophil extracellular trap formation and Coronavirus
disease — COVID—19, underscoring potential involvement
of DEGs in critical signaling cascades and regulatory
networks (Table 2). Visualization of results facilitated the
interpretation and exploration of enriched biological
pathways and functions associated with DEGs, offering

log10o(P-value)
log10(P-value)

log2(fold change)

(a)

1574 42 145

(a)
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valuable insights into the molecular mechanisms driving
observed gene expression changes in our study, thus laying
the foundation for further investigation and interpretation.

Network Dynamics in T3DM Based on Hub Gene
Centrality and MCODE Clustering: The PPI network
analysis was meticulously conducted by querying publicly
available databases, notably STRING which aggregates
protein interaction data from various sources, including
experimental results, computational prediction methods and
public text collections. The resultant network was visualized
using the cytoscape software (Figure 4).

Enhancing the analysis, we applied the MCODE algorithm,
a cytoscape plugin designed to detect densely connected
regions within large PPI networks. These regions indicate
protein complexes or functional modules that play pivotal
roles in cellular processes. Our MCODE analysis,
parameterized with a node score cutoff of 0.2 and a k-core
threshold of 2, identified seven clusters (Table 3). The first
cluster displayed a high degree of interconnectivity and
biological significance, suggesting its involvement in crucial
pathways integral to disease progression (Figure 5).

+ Downregulation
+  Similar Express
+  Upregulated

or

log2(fold change)
(b)
Figure 2: Volcano plot (a) DEGs in GSE26168 (b) DEGs in GSE63063.

1159 7 269

(b)

Figure 3: Venn diagram (a) Common down-regulated DEGs in GSE26168 and GSE63063
(b) Common up-regulated DEGs in GSE26168 and GSE63063.
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Gene Ontology (Cellular Components (CCs), Molecular Functions (MFs), Biological Processes (BPs) of 119 common

DEGs in GSE26168 and GSE63063

ID Description 1(1;;2?) Bg Ratio | p value | p. adjust | q value gene ID Count
FCGR2A/SIRPA/SIGLEC5/CA4/CX
GO:0 Secretory
0306 e L6112 | 306/10550 | 21457 | 4.93522E | 3.72682E | CRI/SELLIMGAM/CLECI2A/CDI 6
p mge mb‘rlane SE-11 -09 09 4/FPR1/ADGRG3/ADGRES5/MME/
CD68/PLAUR/FPR2
GO:0 . SIRPA/SIGLEC5/PGLYRP1/MGAM
0708 Temafy 10/112 | 164/19559 31'134886 4'02)16715' 3 '076‘67 4E | JCLEC12A/FPRI/TIMP2/FPRYMM | 10
20 granuie il - P9/ALDOA
GO:0 RPS29/RPL10A/ANXA1/RPS10/RP
0300 Cel.l's“?s”ate 13/112 | 423/19559 98'1%00176 7'055‘562E > '3207 529E L27/ACTN1/PCBP2/VIM/HSPAIB/ | 13
55 Jjunction - - - ADGRES5/MME/PLAUR/FERMT3
GO:0 RPS29/RPL10A/ANXA1/RPS10/RP
0059 (fhoca.‘l 12/112 | 415/19559 ‘;'2333 0'0;’;’;66 0'0536201 L27/ACTN1/PCBP2/VIM/HSPAIB/ | 12
25 adhesion - ADGRES/MME/PLAUR
GO:0 | Ficolin-1-rich 2.5932 | 0.001192 | 0.000900 | SIRPA/SIGLEC5/MGAM/FPR1/FPR
1010 granule 5112 | 61/19559 5
» 6E-05 902 818 |2
8 03 membrane
(0}%3 T:Ei{g s12 | 7310550 | 6:1999 | 0.002376 | 0.001794 | SIRPA/SIGLECS/MGAM/CLECI2A s
g 4E-05 642 718 | /FPR2
21 membrane
GO:1 Terti 0.0002 | 0.009116 | 0.006884
9047 crhary 4112 | 55/19559 | - : : PGLYRP1/TIMP2/MMP9/ALDOA 4
24 granule lumen 77467 779 525
ggg Specific 6112 | 160/19550 | 0-0003 | 0.009186 | 0.006936 | PGLYRP1/CLECI2A/ADGRG3/TI 6
]l granule 19522 263 995 MP2/PLAUR/FPR2
ggg Cytosolic s112 | 110/19550 | 0-0004 | 0.009899 | 0.007475 | RPS29/RPL10A/RPS10/RPL27/RSL 5
26 ribosome 27178 829 843 24D1
Coﬁg Secretory 112 | 322/19559 | 0-0005 | 0.009899 | 0.007475 | CYBSR3/ACTNI/SERPINA1/PGLY g
74 granule lumen 33878 829 843 RP1/TIMP2/FERMT3/GRN/ALDOA
GO0 Pattern
0381 | reeogmition | oy ig3sy | 10271 1°0.003297 1 0.003135 1y o0 1y RepGLYRPI/CDI4 4
37 receptor 4E-05 113 474
activity
GO:0 Double-
0037 | stramded RNA | 5111 | 76/18352 | 97058 | 0.015577 | 0.014814 | LSMI4A/ACTNI/VIM/TLRS/ADA 5
dec 1E-05 83 136 |R
25 binding
Coi%g Carbohydrate | 111 | 5e71g350 | 0-0011 | 0.101474 | 0.096499 | CLEC4A/TALDO1/SIGLECS/SELL/ ;
16 binding 97174 351 629 | MGAM/CLEC12A/ALDOA
£ | GO:0 Immune
= | 1403 receptor s/11 | 135/18352 | %0013 | 0101474 1/0.096499 | v ~p 111 17R A/FPR1/CSE3R/FPR2 5
°P' 73988 351 629
75 activity
Superoxide-
GO0 generating
: NADPH 0.0015 | 0.101474 | 0.096499
0;21 Seidase UL | 1018352 | groos 251 620 | NCF4/NCF1C 2
activator
activity
GO:0 0.0019 | 0.102945 | 0.097898
0 é 4918 IgG binding | 2/111 | 1118352 | .50 7 s66 | FCGRT/FCGR2A 2
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GO:0 | Complement
0048 receptor 2/111 12/18352 0.0022 | 0.105469 | 0.100298 FPR1/FPR2 2
. 99957 44 861
75 activity
Superoxide-
GO:0 generating
0161 | NADM®H | 2111 | 1318352 | 00027 | 01086351 0.103309 | \epy NeF1C 2
. 07416 067 295
75 oxidase
activity
GO:0 Phosphatidylin
’ ositol-3- 0.0030 | 0.108992 | 0.103649
0222 phosphate 3/111 48/18352 55877 952 634 VPS36/NCF4/NCF1C 3
binding
Oxidoreductas
GO0 e activity,
' acting on 0.0057 | 0.177438 | 0.168739
0226 NAD(P)H, 2/111 19/18352 96707 309 497 NCF4/NCF1C 2
oxygen as
acceptor
CYB5R3/ABR/FCGR2A/HSPA1B/S
GO0 IRPA/SIGLECS/SERPINA1/PGLYR
043'3 Neutrophil 24/109 | 487/18%66 47416 | 6.18165E | 5.71653E | P1/CXCRI1/SELL/MGAM/CLEC12 24
D degranulation 4E-16 -13 -13 A/CD14/FPR1/ADGRG3/TIMP2/AD
GRE5/MME/CD68/PLAUR/FPR2/M
MP9/GRN/ALDOA
Neutrophil CYB5R3/ABR/FCGR2A/HSPA1B/S
GO0 a:tljvr;trl)o; IRPA/SIGLECS/SERPINA1/PGLYR
' . . 5.4415 | 6.18165E | 5.71653E | P1/CXCRI1/SELL/MGAM/CLEC12
0022 | imvolvedin | 247109 | 490718866 | 9p 16 | .13 13 | A/CDI4/FPRI/ADGRG3/TIMPY/AD | 24
1mmune GRES/MME/CD68/PLAUR/FPR2/M
response MP9/GRN/ALDOA
GO:0 Positive
002.8 regulation of 2/109 251/18866 0.0001 | 0.058995 | 0.054556 | LY96/CLEC4A/LSM14A/MATR3/T ]
33 response to 04896 262 404 LR&/FYN/FPR2/GRN
biotic stimulus
GO:0 Astrocyte 0.0001 | 0.058995 | 0.054556
0327 differentiation 5/109 83/18866 19125 262 404 NOTCH1/VIM/STAT3/FPR2/GRN 5
GO:0 | Regulation of LY96/CLEC4A/LSM14A/MATR3/P
2| 0028 | responseto | 10/109 | 409/18866 | 00001 | 0-058995 1/0.054556 | ~pp) oy Re/FYN/ADAR/FPR2/GR | 10
m S 29831 262 404
31 biotic stimulus N
GO:0 | Regulation of
0326 interleukin-8 5/109 93/18866 0.0002 | 0.069080 | 0.063882 | ANXA1/HSPA1B/TLR8/STAT3/CD 5
. 03706 126 474 14
77 production
GO-0 Positive
' regulation of 0.0002 | 0.069080 | 0.063882
02%7 interleukin-8 4/109 54/18866 66942 126 474 HSPA1B/TLR8&/STAT3/CD14 4
production
GO:0 .
Interleukin-8 0.0002 | 0.069080 | 0.063882 | ANXA1/HSPA1B/TLR8/STAT3/CD
03%6 production 5/109 | 101718866 99329 126 474 14 >
%};)7:2 lelO‘f 2109 | 222/18866 | 0-0003 | 0.069080 | 0.063882 | ANXAI/SIRPA/CXCRI/ILITRA/D .
eukocyte 06591 126 474 | YSF/CSF3R/FPR2
29 migration
SRP-
GO:0 dependent
0066 cotranslaFlonal 5/109 105/18866 0.0003 | 0.069080 | 0.063882 | RPS29/SRP9/RPL10A/RPS10/RPL2 5
14 protein 58302 126 474 7
targeting to
membrane
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Table 2
KEGG analysis of 119 common DEGs in GSE26168 and GSE63063
ID Description 1({;::1;) Bg Ratio | p value | p.adjust q value gene ID Count
Coronavirus RPS29/RPL10A/RPS10/RPL27/
a0 | disease - o2 | 2328223 | P40 | OO0TIO0 10007484474 | RSL24DIFCGR2A/TLRS/STA | 9
COVID-19 T3/ADAR
Neutrophil
hsa0 0.00052 | 0.039390 VDAC3/FCGR2A/NCF4/PADI
4613 extracellul.ar trap | 7/62 190/8223 8727 181 0.037010908 4/TLRS/FPR1/FPR2 7
formation
Pentose
hsa0 1 hosphate 362 | 30/g203 | O-00143 1 00711965 1 66896129 | TALDOI/TKT/ALDOA 3
0030 3488 94
pathway
VPS36/CAPZA2/EHDI1/IQSEC
hsad | g qocytosis | 7/62 | 251/8223 | 0:00266 | 0.080169 1 05359945 | 1/HSPAIB/RABIIFIPI/CXCR | 7
4144 6655 71 1
hsa0 Osteoclast 0.00269 | 0.080169 GAB2/FCGR2A/NCF4/SIRPA/
4380 | differentiation 3/62 128/8223 0259 71 0.075327245 FYN >
hsa0 . 0.00354 | 0.088125
4216 Ferroptosis 3/62 41/8223 2664 151 0.082802155 | VDAC3/PCBP2/ACSL1 3
hsa0 Lipid and 0.00541 | 0.1151664 LY96/NCF4/HSPA1B/STAT3/C
5417 atherosclerosis 6/62 215/8223 0505 56 0.108210093 D14/MMP9 6
hsa0 . 0.00828 | 0.154339 RPS29/RPL10A/RPS10/RPL27/
3010 Ribosome 5/62 167/8223 6685 512 0.145016991 RSL24D1 5
hsa0 Platelet 0.01402 | 0.232134 FCGR2A/TBXAS1/FYN/FER
4611 activation 4/62 124/8223 1504 125 0.218112601 MT3 4
hsa0 | Biosynthesis of 0.01876 | 0.279560
1230 Amino acids 3/62 75/8223 2433 753 0.262674063 | TALDO1/TKT/ALDOA 3
hsa0 Alcoholic liver 0.02196 | 0.297461
4936 disease 4/62 142/8223 0273 ”76 0.27949438 | LY96/ACADM/IL17RA/CD14 4
hsa0 Staphylococcus 0.03554 | 0.414236
5150 | aureus infection 3/62 96/8223 1321 788 0.389215304 | FCGR2A/FPR1/FPR2 3
hsa0 Hematopoietic 0.03840 | 0.414236
4640 cell lineage 3/62 99/8223 6432 738 0.389215304 | CD14/CSF3R/MME 3
hsa0 Fatty acid 0.04144 | 0.414236
0071 degradation 2/62 43/8223 5526 738 0.389215304 | ACADM/ACSLI 2
Toll-like
hsa0 receptor 0.04343 | 0.414236
4620 signaling 3/62 104/8223 6364 738 0.389215304 | LY96/TLR8/CD14 3
pathway
hsa0 | HIF-1 signaling 0.04878 | 0.414236
4066 pathway 3/62 109/8223 1711 738 0.389215304 | MKNK2/STAT3/ALDOA 3
Furthermore, a Hub Genes analysis was performed to Analysis (TFEA) identified 11 putatively enriched

discern critical regulators within the PPI network. Hub genes
were identified and prioritized based on their topological
properties, quantified by metrics such as Degree, MCC,
Closeness and MNC. These centrality measures were
instrumental in pinpointing hub genes such as MNDA,
FCER1G, ALOX5AP, NCF2, CSF3R, FPR1, FGR and
HCK, which are hypothesized to be central drivers of
molecular interactions in the pathogenesis of T3DM (Figure
6). ldentifying these hub genes not only enhances our
understanding of the diseases’ molecular underpinnings but
also underscores potential therapeutic targets warranting
further exploration and validation.

Integrative Analysis to explore the Transcriptional
Regulatory Landscape: Transcription Factor Enrichment

https://doi.org/10.25303/2012rjbt1090122

transcription factors (TFs) governing the expression of
DEGs based on ChlP-seq data. Notably, TFs such as
RUNX1, SPI1, POU5SF1, RELA, NANOG, GATAZ2,
GATAL, KLF4, TCF3, NFE2L2 and REST were among the
top enriched regulators, suggesting their potential roles in
orchestrating gene expression changes (Figure 7a) (Table 4).
Subsequent construction of a PPI network connecting these
enriched TFs using the Genes2Networks (G2N) method
revealed a complex network of interactions, highlighting
potential cooperative and regulatory relationships among the
identified TFs (Figure 7b). Kinase enrichment analysis
(KEA) predicted several protein kinases potentially
regulating mRNA expression changes, with kinases such as
HIPK2, ERK1l, MAPK1l, MAPK3, MAPK14 and
CK2ALPHA (Figure 7c).

115



Research Journal of Biotechnology

GO Results of Three Ontologies

Enrichment Score

(b)

Vol. 20 (12) December (2025)
Res. J. Biotech.

Pathway Analysis

Coronavinus disease - COVID-19 | |

Neutreph extracelular rap formaben | |

Pontose phosphate pathwy | |

1 2 3 4
EnrichmentScore (-log10(pvalue))

(c)

Figure 4: PPI networks.
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Table 3
MCODE Clusters.
Cluster Score Node Edge
Cluster 1 33.65 41 673
Cluster 2 4 7 12 | =
Cluster 3 3.556 10 16 Ao
=

Cluster 4 3 5 6 al -

/’/ T
Cluster 5 2.857 8 10 e
Cluster 6 2.667 4 4
Cluster 7 2.5 5

FCER1G

10.0 7.5 5.0 25 0.0

(e)
Figure 6: Hub genes (a) Degree (b) MCC (c) Closeness (d) MNC (e) UpSet plot.
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Integration of enriched TFs and kinases via known PPIs
using the X2K algorithm generated a comprehensive
upstream  pathway, unveiling intricate  regulatory
mechanisms underlying gene expression alterations (Figure
7d). This integrative analysis provides valuable insights into
the regulatory landscape governing gene expression
dynamics in the context of the studied biological system.

run: [
-
sein
POUSF1 1.12¢-1
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Understanding the structural properties of small molecules
in relation to their receptor sensitivity necessitates a
comprehensive examination of the protein-drug connection.
The ten most important therapeutic drugs interacting with
the DEGs have been determined based on their P value (p <
0.01) utilizing the EnrichR program from the DSigDB
database.

NaA

;;;;;;

@ Transaription factor Intormediate protein @ Kinase — Phosphorylation PRI

) _e .'.... kS
(d)

Figure 7: Transcriptional Regulatory Landscape (a) Transcription Factor Enrichment Analysis (TFEA)
(b) Protein-Protein Interaction Expansion (c) Kinase Enrichment Analysis (KEA) (d) eXpression2Kinases Network.

Table 4
Enriched transcription factors (TFs) governing the expression of DEGs.
Rank Transcription Factor Hypergeometric p-value Enriched Targets
1 RUNXI 0.01564 FCERIG; FGR; ALOX5AP
2 SPI1 0.02505 NCF2; MNDA; ALOX5AP
3 SPI1 0.07709 NCF2; ALOX5AP
4 POUSF1 0.112 HCK
5 RELA 0.1987 NCF2
6 NANOG 0.2391 HCK
7 GATA2 0.2999 MNDA
8 GATA1 0.3114 CSF3R
9 KLF4 0.3681 HCK
10 TCF3 0.3738 HCK
11 NFE21.2 0.3786 ALOXS5AP
12 REST 0.4518 CSF3R

The predicted drugs were allopurinol CTDO00005353,
neostigmine bromide PC3 Down, indomethacin CTD
00006147, copper sulfate CTDO00007279, methyl
methanesulphonate CTD 00006304, hydrogen peroxide
CTD00006118, phenethyl isothiocyanate CTD 00002443
and Diclofenac CTD 00005804.

Comprehensive intricate signaling between T2DM and
AD based on genetic and epigenetic factors

https://doi.org/10.25303/2012rjbt1090122

HIPK2 Regulation: The intersection of T2DM and AD
(T3DM) is particularly interesting due to the shared
molecular pathways involving HIPK2. In individuals with
T2DM, the dysregulation of HIPK2 may exacerbate AD
pathology. The aberrant activity of HIPK2 in T2DM could
further  promote =~ AP  accumulation and tau
hyperphosphorylation, thereby intensifying neuronal
damage and cognitive decline associated with AD?627.28.39,
Moreover, the interplay between insulin resistance, a
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defining characteristic of T3DM, suggests a bidirectional
relationship where each condition may influence the
progression of the other. Insulin resistance has been shown
to affect brain metabolism and function, potentially
contributing to the development and progression of AD?%2
(Figure 8).

ERK1 Regulation: The interplay between T3DM is
underscored by the observation that insulin resistance and
the resultant hyperglycaemia may exert deleterious effects
on brain function. Specifically, alterations in ERK1 activity
associated with T2DM could compromise of synaptic
integrity and disrupt cognitive functions. This suggests a
mechanistic link whereby T2DM-associated metabolic
disturbances might contribute to the cognitive deficit
characteristic of AD?"7. Moreover, dysregulated ERK1/2
signaling has been identified in patients with AD, with
potential implications for the multifaceted underlying
pathologies of the disease including amyloid-B plaque
formation, tau phosphorylation and neuroinflammation. The
dysregulation of ERK1 in T2DM could thus have a
cascading effect on these AD-related pathologies,
potentially exacerbating the disease process'® (Figure 8).

MAPK1, MAPK3 and MAPK14 Regulation: MAPK1,
MAPK3 and MAPK14 are integral components of the
Mitogen-Activated Protein Kinase (MAPK) family, a group
of serine/threonine-specific protein kinases involved in a
myriad of cellular processes. These kinases play pivotal
roles in transducing extracellular signals to the cellular
nucleus, thereby influencing gene expression and cellular
responses. The dysregulation of MAPK1, MAPK3 and
MAPK14 in T2DM could potentially influence the
pathophysiology of ADY.

Insulin resistance and chronic inflammation associated with
T2DM may exacerbate synaptic dysfunction and
neuroinflammation, thereby contributing to the cognitive
decline observed in AD* The interplay between these
kinases in T3DM underscores the complex relationship
between metabolic disorders and neurodegenerative
diseases.

Understanding the molecular mechanisms by which
MAPK1, MAPK3 and MAPK14 contribute to the
pathogenesis of T3DM could provide insights into potential
therapeutic targets for these conditions. Targeting the
dysregulated MAPK signaling in T2DM may improve
metabolic outcomes and mitigate the risk or progression of
AD (Figure 8).

CK2ALPHA Regulation: CK2ALPHA is also a
serine/threonine kinase that plays a crucial role in various
cellular processes including glucose metabolism and insulin
signaling®2. The interplay between T3DM is particularly
noteworthy in the context of CK2ALPHA activity. The
metabolic disturbances associated with T2DM such as
hyperglycaemia and insulin resistance, could influence the

https://doi.org/10.25303/2012rjbt1090122
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activity of CK2ALPHA 15, This, in turn, may exacerbate
tau pathology by promoting further tau phosphorylation. The
presence of T2DM could thus potentiate the
neurodegenerative processes in AD, potentially accelerating
the onset and progression of cognitive decline!’. Moreover,
the dysregulation of CK2ALPHA in T2DM may have
broader implications for neuronal health. Given the kinase’s
involvement in cell survival, apoptosis and response to
oxidative stress, its dysfunction could contribute to the
neuronal cell loss observed in AD (Figure 8).

Discussion

The current study aims to explore the molecular interplay
between these comorbidities using bioinformatics tools and
network biology. The comprehensive analysis of Affymetrix
microarray data from datasets GSE26168 and GSE63063
revealed significant molecular linkages between T2DM and
AD, commonly known as T3DM. After stringent
preprocessing and quality control steps, differential gene
expression analysis identified many genes dysregulated in
both conditions. Notably, several key genes implicated in
insulin signaling pathways, such as FCER1G, FGR,
ALOX5AP, NCF2 and CSF3R, exhibited altered expression
patterns across both datasets. Additionally, genes associated
with neuroinflammation and synaptic dysfunction including
FCER1G, FGR, ALOX5AP, NCF2, HCK, CSF3R,
displayed differential expression profiles consistent with the
pathogenesis of T3DM.

Furthermore, pathway enrichment analysis highlighted the
involvement of shared biological processes including
SRP—dependent cotranslational protein targeting to
membrane, myeloid leukocyte migration, interleukin—8
production, positive regulation of interleukin—8 production,
regulation of interleukin—8 production, regulation of
response to biotic stimulus, astrocyte differentiation,
positive regulation of response to biotic stimulus, neutrophil
activation involved in immune response and neutrophil
degranulation, underscoring the interconnectedness of these
two complex diseases at the molecular level.

Network analysis unveiled intricate interactions among
dysregulated genes, pinpointing central hubs and potential
regulatory nodes driving the pathophysiology of T3DM
comorbidity. Moreover, integrating clinical metadata
enabled the identification of candidate biomarkers
associated with disease progression and severity.
Collectively, these findings provide novel insights into the
molecular underpinnings of T3DM interplay, laying the
groundwork for targeted therapeutic strategies and precision
medicine approaches to mitigate the burden of these
devastating neurodegenerative disorders.

Conclusion

Comprehensively, the current study investigating molecular
overlaps between T2DM and AD explored several key genes
MNDA, FCER1G, ALOX5AP, NCF2, CSF3R, FPR1, FGR
and HCK that are commonly expressed in these pathology.
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Figure 8: TF-Gene-Kinase Dynamics in T2DM and AD, or T3DM Pathogenesis.

These genes fall into critical biological pathways including
insulin signaling, immune response and neuroinflammation,
all of which are key pathophysiology factors between both
maladies. Moreover, the central regulator of these
investigated genes has been identified as RUNX1, SPI1 and
RELA transcription factors that may orchestrate a complex
network of interactions at the molecular level.

These interactions further include kinase pathways such as
MAPK1, MAPK3, MAPK14 and CK2ALPHA, which are
critically involved in cellular stress responses, inflammatory
signaling, oxidative stress response and synaptic function.
Interestingly, the implication of RUNX1 and SPI1 modulate
the MAPK signaling pathways which play a fundamental
role in cellular responses to stress and inflammation. This
shared  molecular  framework  suggests common
pathophysiological landscape exacerbating T2DM and AD.
The potential biomarkers and therapeutic targets in this
research, comprising DEGs, transcription factors and
kinases, offer exciting opportunities for the development of
novel therapeutic agents that modulate the implicated
pathways and, therefore, address the interlinked pathologies
of T2DM and AD. The illumination of these molecular
connections not only deepens our understanding of the
diseases but also forms the foundation for future research to
be directed at exploration and validation of these biomarkers
and targets towards the development of novel treatments for
these chronic conditions.
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